Skip to main content

Advertisement

Log in

Phytochemical Evaluation and Antioxidant Potential of Polyherbal Extract Mixture—an In Vitro and In Silico Study

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Standardisation of polyherbal formulations plays a key role in estimating the quality and safety of drugs. In this study, a novel polyherbal formulation was prepared for the treatment of diabetic nephropathy and it was attempted to evaluate for its safety and efficacy against free radicals. To ascertain the safety of the formulation, individual herbs and polyherbal formulation have been screened for microbial load, heavy metals, pesticide residues and aflatoxins according to Ayush guidelines. Phytochemical analysis was carried out using standard procedures and GCMS analysis to identify the bioactive compounds. Antioxidant methods such as DPPH, nitric oxide, hydrogen peroxide, hydroxyl and superoxide radical scavenging assays were undertaken. To predict the mechanism behind the antioxidant efficacy, a molecular docking analysis was performed against Keap1/Nrf2 (PDB ID: 2FLU) protein using AutoDock Vina software. Phytochemical analysis showed the presence of alkaloids, tannins, flavones, glycosides, polyphenols, phytosterols and saponins. The results of in vitro antioxidant studies showed increase in percentage inhibition with increase in concentration and found no significant difference compare with standards. Among the 15 bioactive compounds identified from GCMS analysis, guanosine showed high binding affinity with Keap1/Nrf2 and interacting with similar residues as that of standard ascorbic acid which is analysed through molecular docking. Based on the results, it has been concluded that the safety parameters of polyherbal formulation were found within specified limits of Ayush guidelines and its efficacy against oxidative stress plays an effective role to treat diabetic nephropathy due to its synergistic antioxidant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be available on requisition to corresponding author.

References

  1. Duraiswamy, A., Shanmugasundaram, D., & Sheela, C. (2016). Evaluation of the phytochemical constituents in ADJ6, an anti-diabetic polyherbal formulation by GC-MS. Journal of Pharmacognosy and Phytochemistry, (March). Retrieved from http://www.phytojournal.com/archives/2016/vol5issue1/PartC/4-4-51.pdf

  2. ArchanaGautam, S. J. K., Sharma, P. K., Garg, V. K., V, S., & K, N. (2010). Identification, evaluation and standardisation of herbal drugs: a review. Der Pharmacia Lettre, 2(6), 302–15.

    Google Scholar 

  3. Kashihara, N., Haruna, Y., Kondeti, V. K., & Kanwar, Y. S. (2010). Oxidative stress in diabetic nephropathy. Current medicinal chemistry, 17(34), 4256–4269. https://doi.org/10.2174/092986710793348581

    Article  CAS  Google Scholar 

  4. General guidelines for drug development of Ayurvedic Formulations, Vol. I, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Govt. of India, New Delhi. (2018). (1st edition) 6(7):41.

  5. Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    Article  CAS  Google Scholar 

  6. Tavafi, M. (2013). Diabetic nephropathy and antioxidants. Journal of nephropathology, 2(1), 20–27. https://doi.org/10.5812/nephropathol.9093

    Article  Google Scholar 

  7. Kumar, G., Karthik, L., & Rao, K. V. B. (2013). Phytochemical composition and in vitro antioxidant activity of aqueous extract of Aerva lanata (L.) Juss. ex Schult. Stem (Amaranthaceae). Asian Pacific Journal of Tropical Medicine, 6(3), 180–187. https://doi.org/10.1016/S1995-7645(13)60020-6

    Article  CAS  Google Scholar 

  8. Pari, L., & Satheesh, M. A. (2004). Antidiabetic activity of Boerhaavia diffusa L.: effect on hepatic key enzymes in experimental diabetes. Journal of Ethnopharmacology, 91(1), 109–113. https://doi.org/10.1016/j.jep.2003.12.013

    Article  CAS  Google Scholar 

  9. Kannabiran, K., & Gayathri, M. (2008). Hypoglycemic activity of Hemidesmus indicus R. Br. on streptozotocin-induced diabetic rats. International Journal of Diabetes in Developing Countries, 28(1), 6. https://doi.org/10.4103/0973-3930.41979

    Article  Google Scholar 

  10. Ruvin Kumara, N. K. V. M., Pathirana, R. N., & Pathirana, C. (2005). Hypoglycemic activity of the root and stem of Salacia reticulate. var. β- diandra . in alloxan diabetic rats. Pharmaceutical Biology, 43(3), 219–225. https://doi.org/10.1080/13880200590928780

    Article  Google Scholar 

  11. Ahamad, J., Mir, S. R., & Naquvi, K. (2012). Hypoglycemic activity of aqueous extract of Berberis aristata stems bark in STZ-induced rats. International Journal of Pharmacy and Pharmaceutical Sciences, 4, 473–474.

    Google Scholar 

  12. Arora, D. S., & Sood, H. (2017). In vitro antimicrobial potential of extracts and phytoconstituents from Gymnema sylvestre R.Br. leaves and their biosafety evaluation. AMB Express, 7(1), 115. https://doi.org/10.1186/s13568-017-0416-z

    Article  CAS  Google Scholar 

  13. Sharma, V., & Pandey, D. (2010). Protective role of Tinospora cordifolia against lead-induced hepatotoxicity. Toxicology international, 17(1), 12–17. https://doi.org/10.4103/0971-6580.68343

    Article  CAS  Google Scholar 

  14. Islam, M. S. (2011). Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine : International journal of phytotherapy and phytopharmacology, 19(1), 25–31. https://doi.org/10.1016/j.phymed.2011.06.025

    Article  Google Scholar 

  15. Adam, S. H., Giribabu, N., Kassim, N., Kumar, K. E., Brahmayya, M., Arya, A., & Salleh, N. (2016). Protective effect of aqueous seed extract of Vitis Vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 81, 439–452. https://doi.org/10.1016/j.biopha.2016.04.032

    Article  CAS  Google Scholar 

  16. Mishra, R. K., & Singh, S. K. (2009). Reversible antifertility effect of aqueous rhizome extract of Curcuma longa L. in male laboratory mice. Contraception, 79(6), 479–87. https://doi.org/10.1016/j.contraception.2009.01.001

    Article  Google Scholar 

  17. Rathi, B. S., Bodhankar, S. L., & Baheti, A. M. (2006). Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. Indian journal of experimental biology, 44(11), 898–901.

    CAS  Google Scholar 

  18. Lohar, DR. (2007). Protocol for Testing of Ayurveda, Siddha & Unani Medicines, Dept, of AYUSH, Ministry of Health & Family Welfare, PLIM, Ghaziabad. (n.d.).

  19. Trease G.E., & Evan W.C. (1983). Pharmacognosy, Ed 12, English language Book society, Balliere Tindall. London. 309–315 and 706–708.

  20. Kokate, C. K., P, A. P., & G, S. B. (1997). Pharmacognosy. India, Nirali Publication.

    Google Scholar 

  21. J.B., H. (1984). Phytochemical methods a guide to modern techniques of plant analysis. (2nd Editio.). Chapman and hall London.

  22. Kokate CK, A. P. and S. G. (2010). Textbook of pharmacognosy (45th Editi.). Pune: Nirali Publication.

  23. Ajanal, M., Gundkalle, M. B., & Nayak, S. U. (2012). Estimation of total alkaloid in Chitrakadivati by UV-spectrophotometer. Ancient science of life, 31(4), 198–201. https://doi.org/10.4103/0257-7941.107361

    Article  Google Scholar 

  24. Ghasemzadeh, A., Jaafar, H. Z. E., & Rahmat, A. (2010). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules (Basel, Switzerland), 15(6), 4324–4333. https://doi.org/10.3390/molecules15064324

    Article  CAS  Google Scholar 

  25. Stankovic, M. S., Niciforovic, N., Topuzovic, M., & Solujic, S. (2011). Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, F. supinum (L.) Reichenb. Biotechnology & Biotechnological Equipment, 25(1), 2222–2227. https://doi.org/10.5504/BBEQ.2011.0020

    Article  Google Scholar 

  26. Sabir, S. M., H, I., & G, S. D. A. (2003). Estimation of sterols in edible fats and oils. Pakistan Journal of Nutrition, 2(3), 178–218.

    Article  Google Scholar 

  27. Lu, Y., Khoo, T. J., & Wiart, C. (2014). Antioxidant activity determination of citronellal and crude extracts of Cymbopogon citratus by 3 different methods. Pharmacology & Pharmacy, 05(04), 395–400. https://doi.org/10.4236/pp.2014.54047

    Article  CAS  Google Scholar 

  28. Adjimani, J. P., & Asare, P. (2015). Antioxidant and free radical scavenging activity of iron chelators. Toxicology Reports, 2, 721–728. https://doi.org/10.1016/j.toxrep.2015.04.005

    Article  CAS  Google Scholar 

  29. Ruch, R. J., Cheng, S., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003–1008. https://doi.org/10.1093/carcin/10.6.1003

    Article  CAS  Google Scholar 

  30. Halliwell, B., Grootveld, M., & Gutteridge, J. M. C. (2006). Methods for the measurement of hydroxyl radicals in biochemical systems: deoxyribose degradation and aromatic hydroxylation (pp. 59–90). https://doi.org/10.1002/9780470110546.ch2

  31. Meyer, A. S., & Isaksen, A. (1995). Application of enzymes as food antioxidants. Trends in Food Science & Technology, 6(9), 300–304. https://doi.org/10.1016/S0924-2244(00)89140-2

    Article  CAS  Google Scholar 

  32. Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505

    Article  CAS  Google Scholar 

  33. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34(Web Server), W116–W118. https://doi.org/10.1093/nar/gkl282

    Article  CAS  Google Scholar 

  34. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3c1639::AID-JCC10%3e3.0.CO;2-B

    Article  CAS  Google Scholar 

  35. Trott, O., & Olson, A. J. (2009). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA-NA. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  36. Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics, 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150

    Article  CAS  Google Scholar 

  37. Fricker, P. C., Gastreich, M., & Rarey, M. (2004). Automated drawing of structural molecular formulas under constraints. Journal of chemical information and computer sciences, 44(3), 1065–78. https://doi.org/10.1021/ci049958u

    Article  CAS  Google Scholar 

  38. Chang, Y.-L., Hsu, Y.-J., Chen, Y., Wang, Y.-W., & Huang, S.-M. (2017). Theophylline exhibits anti-cancer activity via suppressing SRSF3 in cervical and breast cancer cell lines. Oncotarget, 8(60), 101461–101474. https://doi.org/10.18632/oncotarget.21464

    Article  Google Scholar 

  39. Huang, Z.-R., Lin, Y.-K., & Fang, J.-Y. (2009). Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules, 14(1), 540–554. https://doi.org/10.3390/molecules14010540

    Article  CAS  Google Scholar 

  40. Alabi, K. A., L. Lajide, and B. J. O. (2018). Biological activity of oleic acid and its primary amide: Experimental and Computational Studies. journal of the nigerian Society of chemical engineers, 43(2).

  41. Lanznaster, D., Dal-Cim, T., Piermartiri, T. C. B., & Tasca, C. I. (2016). Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging and disease, 7(5), 657–679. https://doi.org/10.14336/AD.2016.0208

    Article  Google Scholar 

  42. Ferreira, L. A. F., Henriques, O. B., Andreoni, A. A. S., Vital, G. R. F., Campos, M. M. C., Habermehl, G. G., & de Moraes, V. L. G. (1992). Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae). Toxicon, 30(10), 1211–1218. https://doi.org/10.1016/0041-0101(92)90437-A

    Article  CAS  Google Scholar 

  43. Aratanechemuge, Y., Komiya, T., Moteki, H., Katsuzaki, H., Imai, K., & Hibasami, H. (2002). Selective induction of apoptosis by ar-turmerone isolated from turmeric (Curcuma longa L) in two human leukemia cell lines, but not in human stomach cancer cell line. International journal of molecular medicine, 9(5), 481–484.

    CAS  Google Scholar 

  44. Shalini, K., & S., & Ilango K, I. (2021). Preliminary phytochemical studies, GC-MS analysis and in vitro antioxidant activity of selected medicinal plants and its polyherbal formulation. Pharmacognosy Journal, 13(3), 648–659. https://doi.org/10.5530/pj.2021.13.83

    Article  CAS  Google Scholar 

  45. Kim, D.-H., Han, S.-I., Go, B., Oh, U. H., Kim, C.-S., Jung, Y.-H., … Kim, J.-H. (2019). 2-Methoxy-4-vinylphenol attenuates migration of human pancreatic cancer cells via blockade of FAK and AKT signaling. Anticancer research, 39(12), 6685–6691. https://doi.org/10.21873/anticanres.13883

  46. Nahid Rahbar. (2012). Antimicrobial activity and constituents of the hexane extracts from leaf and stem of Origanum vulgare L. ssp. Viride (Boiss.) Hayek. growing wild in Northwest Iran. Journal of Medicinal Plants Research, 6(13). https://doi.org/10.5897/JMPR11.1768

  47. Yu, X., Zhao, M., Liu, F., Zeng, S., & Hu, J. (2013). Identification of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one as a strong antioxidant in glucose–histidine Maillard reaction products. Food Research International, 51(1), 397–403. https://doi.org/10.1016/j.foodres.2012.12.044

    Article  CAS  Google Scholar 

  48. Kumar, N., Reddy, J. S., Gopikrishna, G., & Solomon, A. (2012). GC-MS determination of bioactive constituents of. International Journal of Pharma and Bio Sciences, 3, 344–350.

    Google Scholar 

  49. Chui, S. H., Wong, Y. H., Chio, H. I., Fong, M. Y., Chiu, Y. M., Szeto, Y. T., …, Lam, C. W. K. (2013). Study of heavy metal poisoning in frequent users of Chinese medicines in Hong Kong and Macau. Phytotherapy research : PTR, 27(6), 859–63.https://doi.org/10.1002/ptr.4816

  50. Geetha, T. S., & Geetha, N. (2014). Phytochemical screening, quantitative analysis of primary and secondary metabolites of Cymbopogan citratus (DC) Stapf. leaves from Kodaikanal hills Tamilnadu. International Journal of PharmTech Research, 6(2), 521–529.

    Google Scholar 

  51. Bresciani, A., Missineo, A., Gallo, M., Cerretani, M., Fezzardi, P., Tomei, L., …, Park, L. C. (2017). Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1). Archives of Biochemistry and Biophysics, 631, 31–41.https://doi.org/10.1016/j.abb.2017.08.003

  52. Sun, Y., Yang, T., Leak, R. K., Chen, J., & Zhang, F. (2017). Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS & Neurological Disorders - Drug Targets, 16(3), 326–338. https://doi.org/10.2174/1871527316666170102120211

    Article  CAS  Google Scholar 

  53. Zhai, K., Duan, H., Khan, G. J., Xu, H., Han, F., Cao, W., …, Wei, Z.-J. (2018). Salicin from Alangium chinense ameliorates rheumatoid arthritis by modulating the Nrf2-HO-1-ROS pathways. Journal of Agricultural and Food Chemistry, 66(24), 6073–6082.https://doi.org/10.1021/acs.jafc.8b02241

  54. Sowndhararajan, K., & Kang, S. C. (2013). Evaluation of in vitro free radical scavenging potential of Streptomyces sp. AM-S1 culture filtrate. Saudi Journal of Biological Sciences, 20(3), 227–233. https://doi.org/10.1016/j.sjbs.2012.12.003

    Article  CAS  Google Scholar 

  55. Shirwaikar, A., & P, I. S. R. (2007). Antioxidant studies on the methanol stem extract of Coscinium fenestration. Natural Product Sciences, 13(1), 40–45.

    CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Dean and the management of SRM College of Pharmacy for the given opportunity to carry over the research work.

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design contributed by SM. Material preparation and data collection were performed by IR. Analysis and the first draft of the manuscript were written by SDV. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sumithra Mohan.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeraswamy, S.D., Raju, I. & Mohan, S. Phytochemical Evaluation and Antioxidant Potential of Polyherbal Extract Mixture—an In Vitro and In Silico Study. Appl Biochem Biotechnol 195, 672–692 (2023). https://doi.org/10.1007/s12010-022-04141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04141-x

Keywords

Navigation